首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   12篇
  国内免费   5篇
测绘学   3篇
大气科学   4篇
地球物理   35篇
地质学   49篇
海洋学   4篇
天文学   4篇
综合类   3篇
自然地理   2篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   12篇
  2019年   7篇
  2018年   14篇
  2017年   14篇
  2016年   12篇
  2015年   8篇
  2014年   12篇
  2013年   4篇
  2012年   4篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
  1997年   1篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
51.
The geochemistry and extractability of Cd in the phosphorite deposits of Hahotoé-Kpogamé (southern Togo) have been studied using various methodologies such as Cd distribution in profiles, grain-size dependence analysis of Cd content, Cd localization using scanning electron microscopy (SEM), sequential acid extraction, and a leaching experiment with artificial seawater. Results demonstrate that in the phosphorite deposits of Hahotoe-Kpogame, Cd is enriched by a factor of 157 compared to shale and by a factor of 3 compared to average world phosphorite composition. The main carrier of Cd appears to be apatite. This is evidenced by significant high positive correlations between the Cd content and P2O5 (in bulk sedimentr = 0.7 and in the 1–0.2 mm fraction r = 0.9). The grain-size dependence of Cd contents (concentrations decreasing with decreasing grain size) and SEM analysis supports these conclusions. Secondary Cd carriers include calcite, goethite, and various bone fragments. Sequential extraction tests with acetic acid and EDTA show an extraction rate reaching up to 40%. Leaching experiments with artificial seawater show evidence of Cd release in seawater. This leads to the conclusion that the processing of phosphorite by wet sieving using seawater and dumping of phosphorite tailings into the coastal waters of Togo can be a major source of marine pollution with Cd.  相似文献   
52.
The study area, the Fasa Plain, is situated in the semiarid region of Fars Province in the south of Iran. The Salloo diapir is a salt dome that crops out in the northwest of the study area. Isotopic and hydrochemical analyses were used to examine the water and how the origin of salinity and the diapir affect the quality of the groundwater quality in the study area. Groundwater was sampled from 31 representative pumping wells in alluvial aquifer and five springs in order to measure their stable isotope compositions, bromide ion concentration, and physical and chemical parameters. The alluvial aquifer was organized into two main groups based on the chemistry, with Group 1 consisting of low-salinity well samples (544–1744 µS/cm) with water type Ca–Mg–HCO3–SO4 which were taken in the center and north of the area, and Group 2 consisting of high-salinity samples (2550–4620 µS/cm) with water type Ca–Mg–Cl–SO4 which were taken from the wells in the south and southwest of the area. A saline spring near the salt dome with an EC of 10,280 µS/cm has water type Na–Cl, while the compositions of the water in the other karstic springs is comparable to the fresh groundwater samples. All groundwater samples are undersaturated with respect to gypsum, anhydrite, and halite and are supersaturated with respect to calcite and dolomite. Stable isotopes (δ18O and δ2H) differentiated four water types: saline springs, freshwater spring, fresh groundwater, and saline groundwater. The results indicate that meteoric water is the main origin of these water resources. Halite dissolution from the salt dome was identified as the origin of salinity. The Na/Cl and Cl/Br ratios confirmed the results. Groundwater compositions in the southwestern part of the area are affected by the intrusion of saltwater from the salt dome. The average saltwater fraction in the some water wells is about 0.2%. In the south and southwestern part of the area, the saltwater fraction is positive in mixed freshwater/saltwater (Group 2). Different processes interact together to change the hydrochemical properties of Fasa’s alluvial aquifer. The main processes that occur in the aquifer are mixing, gypsum dissolution, and calcite precipitation.  相似文献   
53.
ABSTRACT

We address the growing controversy about the tectonic setting in which Jurassic magmatism of Iran occurred: arc or continental rift. In the Ghorveh area of the northern Sanandaj Sirjan zone (SaSZ), the Ghalayan metabasites are interlayered with marble and schist and locally cut by acidic dikes. Zircon U-Pb dating of the metabasitic rocks shows that these crystallized at ca. 145–144 Ma ago in the Late Jurassic (Tithonian). This complex was metamorphosed in the lower greenschist facies, however, some protolithic structures such as pillow lava and primary minerals are preserved. The metabasites are tholeiites with low SiO2 (45.6–50.5 wt.%), moderate Al2O3 (11.3–17.0 wt.%), and high TiO2 (0.7–2.9 wt.%) and Fe2O3 (9.4–14.1 wt.%). The Ghalayan metabasites are enriched in Light rare earth elements (LREEs) without significant Nb, Ta, Pb, Sr and Ba anomalies, similar to modern continental intra-plate tholeiitic basalts such as Afar and East African rifts. The Ghalaylan metabasites show wide ranges for 87Sr/86Sr(i) (0.7039–0.7077) and positive εNd(t) values (+0.1 to +4.6). These isotopic compositions are similar to those expected for slightly depleted subcontinental lithospheric mantle sources. Independently built discrimination diagrams indicate an intra-continental rifting regime for the source of Jurassic metabasites in the northern SaSZ. Geochemical and tectonic evidence suggests that rifting or a mantle plume was responsible for volcanic activity in the Upper Jurassic SaSZ. Considering the variation of ages of basaltic volcanism along the SaSZ, we suggest that Ghalayan basaltic magmatism reflected a submarine volcano that formed as part of the late stage continental rift, similar to Afar in the East African Rift system. Our results indicate that an extensional tectonic regime dominated SaSZ tectonics in the Middle to Late Jurassic.  相似文献   
54.
ABSTRACT

Soheyle-Pakuh granitoid rocks, with a variety of quartz diorite, quartz monzodiorite, granodiorite, tonalite, and granite, have been emplaced into the Tertiary volcanic rocks in the Urumieh-Dokhtar magmatic arc in central Iran. Zircon U–Pb dating yields an age of 39.63 ± 0.93 Ma for the crystallization of this body. Whole-rock compositions show that SiO2 changes from 52.31 to 65.78 wt.% and Al2O3 varies from 15.54 to 18.24 wt.%, as well as high concentrations of large-ion lithophile elements (LILE, e.g. Cs, Rb, Ba, and K) and quite low contents of high field strength elements (HFSE, e.g. Nb, Ti, P), as expected in I-type arc granitoids formed in an active continental margin setting. Initial ratios of 87Sr/86Sr and 143Nd/144Nd exhibit ranges 0.7043–0.7047 and 0.51284 to 0.51287, respectively, with positive εNd(t) from +4.9 to +5.5 with a young TDM1 age (483–674 Ma); this tracer isotopic data suggesting that the SPG originated from juvenile basaltic crust derived from depleted mantle (~90%) with variable contributions from undepleted mantle and approximately 10% old lower crust, despite diverse processes (e.g. magma mixing and fractional crystallization) during their evolution and emplacement into a local extensional setting within the continental margin arc. The isotopic data are similar to those of other Phanerozoic granitoids of the Central Asian Orogenic Belt and corroborate melting of predominantly mantle-derived juvenile crustal protoliths and indicating extensive addition of new continental crust, during Cambrian-Neoproterozoic time, in the suprasubduction zone beneath the central Urumieh-Dokhtar magmatic arc. Generation of these types of granitoids favours a model whereby rollback and (or) break-off of a subducted slab with subsequent lithospheric extension triggered by mantle upwelling, heat advection, and underplating resulting in melting of the central UDMA mantle-derived juvenile lower continental crust in the Late Eocene.  相似文献   
55.
Groundwater is the main water source used for drinking and cooking purposes globally. Nitrate level in most groundwater resources in arid and semi-arid areas has increased in the past several decades as a result of human activities and natural processes. This may exert a great impact on human health. To learn the contamination circumstances of groundwater nitrate in villages of Azadshahr, Iran and assess its probable risk to the health of adults, children and infants, fifty-eight groundwater samples were collected from wells and springs in 2018. Nitrate concentrations had a wide spatial variability in wells and springs of the studied villages, with values going from 1 up to 51 mg/L. Exceedances of the EPA standard value were limited to two village springs (villages Nili and Narab, with nitrate level of 51 and 46 mg/L, respectively). The hazard quotients (HQ) values for 41% of children and infants were above the safety level (i.e., HQ?>?1), suggesting that groundwater nitrate would have significant health effects on these age groups. Therefore, appropriate control measures and sanitation improvement programs should be put in place to protect the health of the residents in the contaminated villages.  相似文献   
56.
The Sangan Magmatic complex (SMC) is, a large I-type magmatic complex, located in the northeastern Iran. Zircons extracted from the intrusive and volcanic rocks within the SMC record a similar Hf compositions and REE patterns, indicating that these chemical signatures have likely been inherited from the same source and simple history of magmatic crystallization during the evolution of the orogeny. The zircon from volcanic rocks yield Ti-in-zircon crystallization temperatures of 667–1145?°C with average temperatures of 934?°C while those from granitoids indicate crystallization temperatures of 614–898?°C with an average of 812?°C. Ti-in-zircon, Ti in biotite thermometries also indicates that the crystallization temperatures of volcanic rocks are relatively higher than those of granitoids. The biotite chemistry studies reveal that this mineral crystallized at approximately 725°–800?°C and 758° to 816?°C for granitoid and volcanic rocks, respectively, which is similar to obtained temperatures by Zir-saturation of Eq. (1). Tzicsat and Tmagma trend lines on the T-SiO2 diagram cross at high silica contents of ~68?wt.%, at which temperature the magma becomes zircon-saturated and new zircons are crystallized. The zircon REE data including Ce/Ce*, Eu/Eu*, and Th/U ratios suggest that SMC igneous rocks are formed from oxidized magma. However, the zircon Th/U and Hf data suggest that the SMC became progressively more oxidized and also indicate lower temperatures from volcanic and plutonic rock with decreasing time.  相似文献   
57.

In this paper, we develop and apply a multi-dimensional vulnerability assessment framework for understanding the impacts of climate change-induced hazards in Sub-Saharan African cities. The research was carried out within the European/African FP7 project CLimate change and Urban Vulnerability in Africa, which investigated climate change-induced risks, assessed vulnerability and proposed policy initiatives in five African cities. Dar es Salaam (Tanzania) was used as a main case with a particular focus on urban flooding. The multi-dimensional assessment covered the physical, institutional, attitudinal and asset factors influencing urban vulnerability. Multiple methods were applied to cover the full range of vulnerabilities and to identify potential response strategies, including: model-based forecasts, spatial analyses, document studies, interviews and stakeholder workshops. We demonstrate the potential of the approach to assessing several dimensions of vulnerability and illustrate the complexity of urban vulnerability at different scales: households (e.g., lacking assets); communities (e.g., situated in low-lying areas, lacking urban services and green areas); and entire cities (e.g., facing encroachment on green and flood-prone land). Scenario modeling suggests that vulnerability will continue to increase strongly due to the expected loss of agricultural land at the urban fringes and loss of green space within the city. However, weak institutional commitment and capacity limit the potential for strategic coordination and action. To better adapt to urban flooding and thereby reduce vulnerability and build resilience, we suggest working across dimensions and scales, integrating climate change issues in city-level plans and strategies and enabling local actions to initiate a ‘learning-by-doing’ process of adaptation.

  相似文献   
58.
Groundwater is the most valuable natural resource in arid areas. Therefore, any attempt to investigate potential zones of groundwater for further management of water supply is necessary. Hence, many researchers have worked on this subject all around the world. On the other hand, the Generalized Additive Model (GAM) has been applied to environmental and ecological modelling, but its applicability to other kinds of predictive modelling such as groundwater potential mapping has not yet been investigated. Therefore, the main purpose of this study is to evaluate the performance of GAM model and then its comparison with three popular GIS-based bivariate statistical methods, namely Frequency Ratio (FR), Statistical Index (SI) and Weight-of-Evidence (WOE) for producing groundwater spring potential map (GSPM) in Lorestan Province Iran. To achieve this, out of 6439 existed springs, 4291 spring locations were selected for training phase and the remaining 2147 springs for model evaluation. Next, the thematic layers of 12 effective spring parameters including altitude, plan curvature, slope angle, slope aspect, drainage density, distance from rivers, topographic wetness index, fault density, distance from fault, lithology, soil and land use/land cover were mapped and integrated using the ArcGIS 10.2 software to generate a groundwater prospect map using mentioned approaches. The produced GSPMs were then classified into four distinct groundwater potential zones, namely low, moderate, high and very high classes. The results of the analysis were finally validated using the receiver operating characteristic (ROC) curve technique. The results indicated that out of four models, SI is superior (prediction accuracy of 85.4%) following by FR, GAM and WOE, respectively (prediction accuracy of 83.7, 77 and 76.3%). The result of groundwater spring potential map is helpful as a guide for engineers in water resources management and land use planning in order to select suitable areas to implement development schemes and also government entities.  相似文献   
59.
Predicting the geometry of channels and alluvial rivers is of primary importance in river engineering science. Appropriately designing channels and predicting stable river cross‐sections can decrease costs and prevent the destruction of installations and agricultural land by rivers. Consequently, researchers have applied different empirical and regression methods to achieve relations for predicting stable channel and river geometry. In this study, Group Method of Data Handling ]GMDH) models are used to predict three geometric variables of stable channels, namely width (w), depth (h) and slope (s). The effect of different input parameters, such discharge (Q), median grain size (d50) and the Shields parameter (τ*) on the GMDH models is assessed with regard to predicting stable channel geometry. The results indicate that the GMDH model with mean absolute percentage error (MAPE) of 5.53%, 4.05% and 4.89% for channel width, depth and slope prediction respectively, exhibits good accuracy. Moreover, a comparison of the GMDH models with previous theoretical equations (based on regression analysis) indicates the superiority of GMDH model performance, with error reductions of one‐fifth, one‐eighth and one‐sixth compared with the regression equations for channel width, depth and slope prediction, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
60.
Water Resources - In this study groundwater potential map of Khorramabad in Lorestan Province, Iran was produced using two different methods; Frequency Ratio (FR) and Weights of Evidence (WoE)...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号